Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice.
نویسندگان
چکیده
Single-walled carbon nanotubes (SWCNT) are new materials of emerging technological importance. As SWCNT are introduced into the life cycle of commercial products, their effects on human health and environment should be addressed. We demonstrated that pharyngeal aspiration of SWCNT elicited unusual pulmonary effects in C57BL/6 mice that combined a robust but acute inflammation with early onset yet progressive fibrosis and granulomas. A dose-dependent increase in the protein, LDH, and gamma-glutamyl transferase activities in bronchoalveolar lavage were found along with accumulation of 4-hydroxynonenal (oxidative biomarker) and depletion of glutathione in lungs. An early neutrophils accumulation (day 1), followed by lymphocyte (day 3) and macrophage (day 7) influx, was accompanied by early elevation of proinflammatory cytokines (TNF-alpha, IL-1beta; day 1) followed by fibrogenic transforming growth factor (TGF)-beta1 (peaked on day 7). A rapid progressive fibrosis found in mice exhibited two distinct morphologies: 1) SWCNT-induced granulomas mainly associated with hypertrophied epithelial cells surrounding SWCNT aggregates and 2) diffuse interstitial fibrosis and alveolar wall thickening likely associated with dispersed SWCNT. In vitro exposure of murine RAW 264.7 macrophages to SWCNT triggered TGF-beta1 production similarly to zymosan but generated less TNF-alpha and IL-1beta. SWCNT did not cause superoxide or NO.production, active SWCNT engulfment, or apoptosis in RAW 264.7 macrophages. Functional respiratory deficiencies and decreased bacterial clearance (Listeria monocytogenes) were found in mice treated with SWCNT. Equal doses of ultrafine carbon black particles or fine crystalline silica (SiO2) did not induce granulomas or alveolar wall thickening and caused a significantly weaker pulmonary inflammation and damage.
منابع مشابه
Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation.
We have shown previously that single-walled carbon nanotubes can be catalytically biodegraded over several weeks by the plant-derived enzyme, horseradish peroxidase. However, whether peroxidase intermediates generated inside human cells or biofluids are involved in the biodegradation of carbon nanotubes has not been explored. Here, we show that hypochlorite and reactive radical intermediates of...
متن کاملAtomic Layer Deposition Coating of Carbon Nanotubes with Aluminum Oxide Alters Pro-Fibrogenic Cytokine Expression by Human Mononuclear Phagocytes In Vitro and Reduces Lung Fibrosis in Mice In Vivo
BACKGROUND Multi-walled carbon nanotubes (MWCNTs) pose a possible human health risk for lung disease as a result of inhalation exposure. Mice exposed to MWCNTs develop pulmonary fibrosis. Lung macrophages engulf MWCNTs and produce pro-fibrogenic cytokines including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and osteopontin (OPN). Atomic layer deposition (ALD) is a novel process u...
متن کاملLong-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons.
The hallmark geometric feature of single-walled carbon nanotubes (SWCNT) and carbon nanofibers (CNF), high length to width ratio, makes them similar to a hazardous agent, asbestos. Very limited data are available concerning long-term effects of pulmonary exposure to SWCNT or CNF. Here, we compared inflammatory, fibrogenic, and genotoxic effects of CNF, SWCNT, or asbestos in mice 1 yr after phar...
متن کاملRosette nanotubes show low acute pulmonary toxicity in vivo
Nanotubes are being developed for a large variety of applications ranging from electronics to drug delivery. Common carbon nanotubes such as single-walled and multi-walled carbon nanotubes have been studied in the greatest detail but require solubilization and removal of catalytic contaminants such as metals prior to being introduced to biological systems for medical application. The present in...
متن کاملAnalysis of Nonlinear Vibrations for Multi-walled Carbon Nanotubes Embedded in an Elastic Medium
Nonlinear free vibration analysis of double-walled carbon nanotubes (DWCNTs) embedded in an elastic medium is studied in this paper based on classical (local) Euler-Bernoulli beam theory. Using the averaging method, the nonlinear free vibration responses of DWCNTs are obtained. The result is compared with the obtained results from the harmonic balance method for single-walled carbon nanotubes (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 289 5 شماره
صفحات -
تاریخ انتشار 2005